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a b s t r a c t

The productivity of ecosystems and their disturbance regime affect the structure of animal communities.
However, it is not clear which trophic levels benefit the most from higher productivity or are the most
impacted by disturbance. The densityebody mass (DBM) relationship has been shown to reflect changes
in the structure of communities subjected to environmental modifications, so far, mainly in aquatic
systems. We tested how different seawater inundation frequencies and cattle grazing, which both
disturbed and impacted the productivity of a terrestrial system, a salt marsh, affected the size structure of
soil fauna communities, expressed by their DBM relationship. We hypothesized that either: (1) all the
trophic levels of soil fauna would benefit from higher productivity (i.e., amount of litter mass), reflected
by a higher Y-intercept of the DBM relationship; (2) only smaller animals would benefit, reflected by a
lower slope of the relationship; (3) or only larger animals would benefit, reflected by a higher slope of the
relationship. We collected a large range of soil fauna from different elevation levels in grazed and
ungrazed areas, thence subjected to different levels of productivity, represented by litter mass, with the
most inundated and grazed area as the least productive one. Considering that pore size must be smaller
in inundated and grazed areas, productivity seemed to be a greater factor influencing species distribution
than soil structure. We found slopes lower than �0.75, showing that large animals dominated the
community. However, a difference between the DBM relationships of the most and least frequently
inundated ungrazed sites indicated that higher productivity benefited the smaller animals. Our findings
show that high productivity does not equally affect the different trophic levels of this soil fauna com-
munity, suggesting inefficient transfers of energy from one trophic level to another, as smaller species
benefitted more from higher productivity.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The composition of plant and animal communities usually de-
pends on ecosystem productivity (Waide et al., 1999; Evans et al.,
2005; Gillman and Wright, 2006) as well as on the impacts dis-
turbances have on those communities, the latter still being debated
(Fox, 2013; Sheil and Burslem, 2013). The mechanisms underlying
those effects of productivity and disturbance remain unclear to date
(Gillman and Wright, 2006; Adler et al., 2011). As they differ
depending on the trophic levels of the community (Wootton,1998),
p, Wageningen University,
herlands.
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a relevant indicator of the functioning of communities may be the
size structure of communities, i.e. the distribution of the sizes of the
plants or animals of a community (Giometto et al., 2013). Thus, in
this study, we used the relationship linking soil fauna’s density to
their body mass in order to test how productivity and disturbance
affect the structure of communities. As many of the studies on this
topic have considered aquatic systems (Sheldon et al., 1972; Strayer,
1986; Marquet et al., 1990; Cyr et al., 1997a; Schmid et al., 2000;
Thygesen et al., 2005) and few have focused on terrestrial ecosys-
tems (Aava-Olsson, 2001; Reuman et al., 2009), this study gives
some new insight in how soil fauna communities are structured as
function of productivity and disturbance.

A common metric of the size structure of communities is the
relationship between the animals’ density and body mass (Peters
and Wassenberg, 1983). It includes variations of one of the most
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Fig. 1. Expected relationships between the density and the body mass of the soil fauna
communities from sites with different productivity levels. Continuous line: low pro-
ductivity site (i.e., with a high frequency of inundation); doted line: expected slope if
the total abundance of all the animals increases with increasing productivity, irre-
spective of their body mass: only the Y-intercept would become higher (Hypothesis 1);
short-dashed line: expected slope when mostly small organisms benefit from a higher
productivity: slope would decrease and higher values would be found for the coeffi-
cient b of the DBM relationship (Hypothesis 2); long-dashed line: expected slope if
more resources are available to species of the higher trophic levels, which are generally
larger, than to species from lower trophic levels: slope would increase and lower
values would be found for the coefficient b of the DBM relationship (Hypothesis 3).
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relevant traits regarding the functioning of animal communities,
the body mass of individual species (Lawton, 1990; Saint-Germain
et al., 2007). The latter encompasses many of the species life-
history traits (Peters, 1983; Peterson et al., 1998; Lewis et al.,
2008), as it relates to ecological, physiological and behavioural as-
pects of animals (Damuth, 1987). A negative relationship between
animal density (D) and body mass (M) has received empirical and
theoretical support, with D ¼ a$Mb, where the exponent b is
approximately �0.75 for taxa within a single trophic level (Brown
et al., 2004; Damuth, 1981, 1987). When considering several tro-
phic levels, b has been reported to be close to �1 (Peters and
Wassenberg, 1983; Boudreau and Dickie, 1992; Schmid et al., 2000).

The more productive an ecosystem is the more organisms it can
support (McGlynn et al., 2010), inducing an increase in species
richness and/or abundance of its communities following the in-
crease in productivity (i.e., the speciese energy hypothesis (Wright
et al., 1993)). Conversely, as a stress or a disturbance decreases the
productivity of an ecosystem and modifies its habitat (Sousa, 1984),
the abundance within each species may decrease and some species
may even disappear because they cannot compete anymore for the
scarce resources and/or survive in the harsher environmental
conditions (i.e., competitive exclusion (Hardin, 1960)). The func-
tioning of a community, and consequently its response to produc-
tivity and disturbance, is determined by species-specific life-history
traits (McGill et al., 2006). Therefore, the relationship between the
animals’ density and body mass can reflect variations of the
structure of communities due to environmental changes (Cyr et al.,
1997a; Reuman et al., 2009), because of the changes in species
richness and abundance (and hence, changes in body mass distri-
bution) of the communities (Leaper and Raffaelli, 1999). However,
despite the “energetic equivalence rule” (Nee et al.,1991) predicting
that population energy use per unit area (the product of density
and individual metabolic requirements) is approximately inde-
pendent of bodymass, it is yet unclear whether this rule is expected
to be found across different levels of productivity (Loeuille and
Loreau, 2006; Buckley et al., 2008). This could be due to the inef-
ficient transfer of energy between trophic levels (Maxwell and
Jennings, 2006; Reuman et al., 2008).

In this study, we tested how the combination of two factors, i.e.,
various seawater inundation frequencies and cattle grazing, both
disturbing the studied system and creating several levels of pro-
ductivity, affects the structure of soil fauna communities repre-
sented by the relationship between the animals’ density and body
mass. The latter may change according to one of three alternative
hypotheses (Fig. 1). Hypothesis 1: based on the energy limitation
hypothesis, which states that the total abundance of organisms
within an ecosystem is limited by the available energy (Wright,
1983; Currie, 1991), we hypothesized that the total number of an-
imals, irrespective of their body mass, would increase if produc-
tivity increases, thus not changing the slope of the relationship, but
only increasing the Y-intercept. Hypothesis 2: if mostly small or-
ganisms benefit from a higher productivity because of the ineffi-
cient transfer of energy to higher trophic levels (Cotgreave, 1993;
Marczak et al., 2007), then an increase in productivity would
result in a lower (steeper) slope of the relationship (Cyr et al.,
1997a). Hypothesis 3: if more resources are available to species of
higher trophic levels, which are generally larger, than to species of
lower trophic levels, then an increase in productivity would result
in a higher slope of the relationship. For instance, it has been shown
that more nutrients can benefit species of the lowest (e.g., plants)
and highest trophic levels (predators) of a community without
affecting the species of the intermediary trophic levels (herbivores
or decomposers) (Abrams, 1993). Both cattle grazing and the
presence of water have an effect on the soil structure: trampling
reduces the size of the soil pores (Schon et al., 2011) and so does a
high inundation frequency (Blom and Voesenek, 1996) and that
may affect the size spectrum of the soil fauna community
(Andresen et al., 1990). Consequently, soil fauna may not only be
sensitive to productivity, but also to the structure of their habitat
(Giller, 1996) and smaller animals may be favoured in grazed and
frequently inundated areas.

Several methods exist to analyse the relationship between the
animals’ density and bodymass of a community (White et al., 2007;
Reuman et al., 2008). As we used several methods to sample the soil
fauna, focussing on three distinct main groups (i.e., nematodes,
Collembola and macrofauna), we opted for the densityebody mass
(DBM) relationship (Cyr et al., 1997b; Reuman et al., 2008): this
relationship shows the representation of the density against body
mass of the dominant species. To be able to better understand and
interpret the results of the DBM relationship, we also measured the
total density and biomass of soil fauna, as well as the average body
mass per individual of each community along the productivity
gradient.

To test our hypotheses, we conducted an experiment in the
coastal grassland of a salt marsh showing a gradient of productivity
caused by different frequencies of seawater inundation periods and
by cattle grazing. We monitored the response of the soil fauna
community, which is largely affected by litter mass (David et al.,
1991; Scheu and Schaefer, 1998; Chen and Wise, 1999). Hence,
differences in litter mass were used to represent different levels of
productivity. The most frequently inundated areas (closest to the
sea) and the grazed areas were expected to be the most disturbed
ones, hence having the lowest litter mass and being the least pro-
ductive compared to the rarely inundated and non-grazed ones
(Bakker, 1985; Schrama et al., 2012). The objective of this study was
to determine which part of soil fauna body size spectrum benefits
the most from a higher productivity in order to better understand
the energy distribution within a community.
2. Material and methods

Fieldwork was carried out on the salt marsh of the barrier island
of Schiermonnikoog, the Netherlands (53�2804300N, 6�1400600E) in
October and November 2011. We selected seven plots (2 � 2 m)
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based on the differences of basal elevation, which determines the
inundation frequency by seawater: daily, weekly, monthly and
annual inundation represented low, lower middle, upper middle
and high salt marsh zones respectively (Hacker and Bertness, 1999).
Except for the daily inundated zone that was only ungrazed, the
three other zones (weekly, monthly and annually inundated) were
divided in grazed and ungrazed zones. Cattle grazing was perma-
nent since 1972, but infrequent and not intensive (stocking rate of
1.3e1.7 animals ha�1) (Bakker, 1985). The ungrazed zone has been
free of cattle since 1972, but hares could graze in both zones (in low
density); the great dominance of the plant species Elytrigia atherica
prevented from the presence of geese. The inundation gradient
spanned across 1 km, with plots of each inundation frequency
located about 300 m apart. The distance between grazed and non-
grazed plots, which were separated by a fence, was around 15 m. In
four sub-plots of 50 � 50 cm located in the corners of each plot, we
collected soil fauna of three size classes (Swift et al., 1979; Decaëns,
2010) representing themost important species groups with regards
to abundance: nematodes (microfauna), Collembola (mesofauna)
and macrofauna (See Appendix 1 for the complete list of species
and morphospecies in the different plots).

2.1. Sampling of soil fauna

Nematodeswere sampled following Cobb’s method (Cobb,1918;
Van Bezooijen, 2006), collecting four cores of soil in each of the
seven plots with a 2 cm wide corer to a depth of 20 cm. Nematode
density was estimated from two sub-samples of 5 ml taken from a
100 ml suspension of nematodes (which consisted of 100 g of soil
and 100 ml of water) with a 35� magnification stereoscopic mi-
croscope. The body mass of nematodes was calculated using
Andrassy’s formula, based on the length and maximum diameter of
nematodes for at least 20 individuals per 5 ml subsample and later
averaged (Andrassy, 1956). The length and maximum diameter of
nematodes were measured with 100� and 400� magnification
respectively. As we were not able to identify the nematodes to
species level, they were distributed into two categories (here called
morphospecies), depending on their body mass: smaller than
10�7 g and larger than 10�7 g.

We sampled Collembola by collecting four 10 cm wide cores of
soil in each plot to a depth of 5 cmwhere collembolan communities
are mostly active (Berg et al., 1998). Collembola were extracted in
Tullgren funnels (10 cm in diameter) for 20 days (Van Straalen and
Rijninks, 1982). Identification was undertaken under a dissecting
microscope based on Hopkin (2007) and the dry body masses were
calculated with allometric relationships from Caballero et al.
(2004), where species specific length and corresponding expo-
nent values are provided.

Soil macrofauna was sampled using 10.5 cm wide and 12 cm
deep pitfall traps without preservative in the corners of each four
sub-plots per plots. We fenced the sub-plots with 50 � 50 cm
Perspex boards, of which 20 cm were in the soil, to obtain a better
estimate of the total abundance, preventing animals from coming
in or out during sampling time. 96 traps (4 traps � 4 sub-plots � 6
plots) were open for seven consecutive days and emptied every
24 h. The traps of the daily inundated plot (4 traps� 4 sub-plots� 1
plot) were also open for seven days, but they were checked every
12 h to avoid loss of material by tidal flooding. The animals of the
four traps of each sub-plot were preserved in 70% ethanol and
pooled together for further analyses. After identification with a
stereoscopic microscope, the animals were then dried for 24 h at
105 �C (Benke et al., 1999) before being weighted with a microscale
with a precision of 1 mg. The species were identified at least up to
their family, and sometimes up to genus or species levels (see
Appendix 1).
2.2. Sampling of environmental variables

We measured three environmental variables that could explain
differences between the soil fauna communities: elevation above
sea level, soil salinity and the ratio between soil carbon (C) and soil
nitrogen (N). Soil C and N content (dried for 72 h at 40 �C) were
measured using a Fisons EA 1108 CHNeO analyser. Soil salinity was
measured using an electrical conductivity meter. The soil samples
were extracted from the top 10 cm of the organic layer using an
auger (2 cm diameter) in each plot for the measurement of soil C, N
and salinity. The elevation of each 2� 2m plot was measured using
a theodolite.

Besides, three biotic environmental factors were measured:
vegetation biomass, litter mass and litter C:N ratio. Litter mass is a
proxy considering both the food resources and the habitat for soil
fauna. Unfortunately, this proxy does not include an estimate of
food quality available, but rather to the quantity. Therefore, litter
and soil C:N ratios were also measured as an index of litter and soil
quality (Ge et al., 2013), as it may be a determining factor for soil
fauna distribution (Rushton and Hassall, 1987). Above-ground
vegetation and soil surface litter were collected by hand using
one 50 � 50 cm quadrate in each 2 � 2 m plot. These litter and
vegetation samples were then dried at 70 �C for 48 h. The dry
biomass was weighed and then expressed in g m�1. Litter C and N
contents were estimated using a Fisons EA 1108 CHNeO analyser.
For all of the abiotic and biotic variables, one sample was collected
in each of the seven 2 � 2 m plots (due to the small plot size). The
data of the environmental variables are presented in the table of
Appendix 2.

2.3. Statistical analyses

First, to test for the differences in animal density, total biomass
and average body mass depending on inundation frequency and
grazing in each sub-plot, and due to the unbalanced design (i.e., the
lack of a grazed plot in the daily inundated site), we used Linear
Mixed Models (LMM, e.g., McCulloch and Searle, 2000) with the
inundation frequencies, grazing and their interaction as fixed fac-
tors, followed by a Sidak post-hoc test for the pairwise comparisons
between the groups. A test of the normality of the residuals showed
that the total biomass and the average bodymass required being ln-
transformed prior to computation.

We used Ordinary Least Square (OLS) regression (Reuman et al.,
2008) to calculate the slopes of the DBM relationships, with data
based on densities of nematodes, Collembola and macrofauna
collected in the pitfall traps. We then computed the regressions and
tested for differences between the slopes of the different sites by
the means of ANCOVAs, i.e., GLMs with the animal densities as the
dependent variable, the sites as a fixed factor, the body mass as a
covariate and the interaction between site and body mass. We used
the significance of the parameter estimates of the interaction in the
GLMs to test the differences in slopes between the sites. To test for
differences between Y-intercepts, we followed the method pro-
posed by Zar (1996). Due to the lack of repetitions, statistics could
not be performed on the environmental factors.

3. Results

3.1. Environmental variables

As could be expected, plots closer to the sea had lower elevation
above sea level and higher salinity (Fig. 2A and B). Plant biomass
showed a large difference between the grazed and ungrazed plots,
being much higher in the latter ones, but did not show strong
variations along the inundation gradient (Fig. 2C). Litter mass in the



Fig. 2. Environmental variables of the grazed (C) and ungrazed (>) plots depending on their frequency of inundation (annual, monthly, weekly and daily inundation). (A) elevation
above sea level using daily inundation as the reference, (B) salinity, (C) plant biomass, (D) litter mass, (E) soil C:N ratio and (F) litter C:N ratio.
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ungrazed plots strongly decreased with increasing inundation
frequency and had low values in the grazed plots (Fig. 2D). Both soil
and litter C:N ratios (Fig. 2E and F) showed no clear change over the
inundation gradient or between grazed and ungrazed plots.

3.2. Soil fauna responses

The LMMs on the total animal density, total biomass and average
body mass revealed some differences between the frequencies of
inundation, both in the grazed and ungrazed plots (Fig. 3; Appendix
3, Table 1). In both the grazed and ungrazed plots, the total density
of animals increased as the frequency of inundation decreased
(Fig. 3A). The total biomass followed a similar pattern in the grazed
plots only; this patternwas opposite in the ungrazed plots (Fig. 3B).
Likewise, in the ungrazed plots, the average body mass was the
highest where the frequency of inundation was the highest
(Fig. 3C). In the grazed plots, therewas no difference for the average
body mass between the different frequencies of inundation
(Fig. 3C). The total density of the annually and monthly inundated
grazed communities was significantly higher than the ungrazed
ones (Fig. 3; Appendix 3, Table 2). The total biomass of the grazed
plots was higher for the annually inundated communities, but
lower for the monthly and weekly inundated communities. The
average bodymass per sub-plot was higher in the grazed plots than
in the ungrazed ones when subjected to the annual inundation, but
lower in the monthly and weekly inundated plots. It should be
noted that the three graphs are not independent: the total density
of animals of the ungrazed sites increased as the inundation fre-
quency decreased, whereas the average body mass increased with
increasing inundation frequency with similar magnitude, resulting
in no differences in total biomass in the ungrazed sites subjected to
different inundation frequencies.

The regressions based on the DBM relationship showed signif-
icant slopes for the communities of the grazed and ungrazed plots,
except for the daily inundated one (Fig. 4AeG). We also computed
the relationships obtained when omitting the two smallest groups
of soil fauna (the two nematode morphospecies): then, all the
slopes weremuch shallower and few remained significant (Fig. 4H).
When considering all the animals, there were no differences be-
tween the Y-intercepts for the different inundation frequencies
(One-way ANOVA: Grazed: F2,65 ¼ 0.24, P ¼ 0.789; Ungrazed:
F3,79 ¼ 0.24, P ¼ 0.871) nor between the grazed and ungrazed plots



Fig. 3. Density, total biomass and average body mass of the soil fauna. Estimated marginal means (�1SE) of (A) the total density (number of animals per m2), (B) total biomass (g)
and (C) average body mass (mg) of the soil fauna of the ungrazed and grazed communities depending on the frequency of inundation. (D) Slopes (�1SE) of the densityebody mass
relationship of the communities. An.: annual inundation, Mo.: monthly inundation, We.: weekly inundation; Da.: daily inundation. Letters indicate differences between frequencies
of inundation or grazing (not across the seven combinations of treatments).
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(Annually inundated: t(47) ¼ e 0.53, P ¼ 0.700; Monthly inundated:
t(50) ¼ �0.95, P ¼ 0.828; Weekly inundated: t(36) ¼ �0.78,
P ¼ 0.781). ANCOVAs testing for differences between the slopes
correlated to the frequency of inundation showed that, overall,
there were no differences between the DBM relationship slopes
(Table 1). However, the parameter estimate of the slope for daily
inundation (the estimate for the interaction between daily inun-
dation and body mass) differed significantly from the parameter
estimate of the slope for annual inundation (the estimate for the
interaction between annual inundation and body mass) (Table 2). A
graph comparing the slopes of the seven communities is presented
in Fig. 3D. There were no differences between the slope of the
grazed and the ungrazed plots subjected to the same frequency of
inundation (Table 3).

4. Discussion

In this study, we tested whether a disturbance that affects the
level of productivity of ecosystems modifies animal community
structures represented by the soil fauna densityebody mass (DBM)
relationship. As it is based on two fundamental ecological indices,
density and body mass, this relationship is expected to reflect
changes in the community structure due to changes in the level of
productivity and disturbances (Cyr et al., 1997a; Reuman et al.,
2009). Results of studies on relationships between density and
body mass have shown much discrepancy in regression slopes or
distributions (Morse et al., 1988; Nee et al., 1991; Silva and
Downing, 1994; Ernest et al., 2003; Russo et al., 2003; Ulrich
et al., 2005; Maxwell and Jennings, 2006), if any slope at all (e.g.,
Gaston and Lawton, 1988). When used to detect environmental
modifications due to disturbances, relationships between density
and body mass also gave mixed results, some studies finding no
relationship with the environment (Siqueira et al., 2008), others
finding a clear relationship, though sometimes opposite (Cyr et al.,
1997a; Reuman et al., 2009). In the present study, we compared the
relationships of soil fauna communities over a productivity
gradient (i.e., litter mass) created by seawater inundation frequency
and cattle grazing.



Table 1
Results of the ANCOVAs comparing the slopes of the densityebody mass (DBM)
relationships of the soil fauna communities subjected to the different frequencies of
inundation.

Frequencies Body mass Frequencies
� body mass

Grazed F2,63 ¼ 0.1 F1,63 ¼ 44.6 F2,63 ¼ 0.1
P ¼ 0.912 P < 0.001 P ¼ 0.960

Ungrazed F3,76 ¼ 1.1 F1,76 ¼ 48.7 F3,76 ¼ 1.6
P ¼ 0.350 P < 0.001 P ¼ 0.198

The bold numbers indicate the significant variables.
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We used several ecological indices (i.e., the total density, the
total biomass and the average bodymass) to help characterizing the
communities and compared them to the DBM relationships. These
indices showed that in the least inundated plots of the ungrazed
area, there were many soil organisms with a small average body
mass, whereas in themost inundated plots, therewere very few soil
organisms and their average body mass was large (Fig. 3A). This
suggests that, as productivity is the highest in the annually inun-
dated non-grazed plots, represented by the high quantity of litter
mass in these plots (Fig. 2D), there were more small individuals in
the high productivity plots at the expense of the large ones. This
agrees with Cyr et al. (1997a), who found more productive eco-
systems to have proportionally more small animals, but it is con-
trary to what Aava-Olsson (2001) found with ground-dwelling
Coleoptera in boreal forests. Therefore, our findings corroborate
Hypothesis 2: in the ungrazed plots, an increase in productivity
would result in a lower value of the coefficient b (i.e., a steeper
slope) of the DBM relationship from the sites with annual to daily
inundation (Fig. 4DeG) (Cyr et al., 1997a; Jennings and Mackinson,
2003). It must be noted that sampling a wide range of body masses
was necessary to find significant slopes and detect differences be-
tween them; had we not, for instance, taken the nematodes into
account, the slopes would have been shallower (higher values) and
few would have been significant (Fig. 4H).

Although our sample size was relatively low (as regard to the
number of plots), we found slopes varying from �0.43 to �0.65; as
these values are higher than �0.75, this shows that, in those soil
fauna communities, populations of large animals use more energy
than populations of small ones. However, even though the slopes
have values differing from �0.75, we suggest that the increase in
the DBM relationship with increases in productivity indicates that
the population energy use of soil fauna per unit area (the product of
density and individual metabolic requirements) is not constant
over a range of body masses, which contradicts the energetic
equivalence rule (EER) (Nee et al., 1991). By merely looking at the
relative changes of the DBM relationship, our findings suggest that
the population energy use per unit area decreases as function of
body mass along a gradient of productivity. As our combined
sampling methods must have allowed us to sample several trophic
levels, this could be explained by the less efficient transfer of en-
ergy to higher trophic levels while mostly small organisms benefit
from this higher productivity (Cotgreave, 1993; Marczak et al.,
2007). A typical cause of inefficient transfer of energy in soil
Table 2
Significance of the pair-wise comparisons of the parameter estimates for the slopes of the
the different frequencies of inundation.

Annually vs. monthly Annually vs. weekly Monthly vs.

Grazed P ¼ 0.954 P ¼ 0.833 P ¼ 0.787
Ungrazed P ¼ 0.575 P ¼ 0.232 P ¼ 0.486

The bold numbers indicate the significant variables.
fauna communities is a high abundance of omnivores (Polis and
Strong, 1996). In food webs, the inefficient transfer of energy
through food chains creates disparities in energy availability at
different trophic levels, especially if the different species do not
share the same energy source and thus, increased productivity does
not equally affect the different trophic levels (Cotgreave, 1993;
Maxwell and Jennings, 2006; Marczak et al., 2007). This could
suggest that the EER may stand for within-trophic-level compari-
sons, but fails for between-trophic-level comparisons.

In our study, we used litter mass as a proxy for productivity as
soil fauna communities are found to increase in species richness
and abundance with litter mass (Batzer and Wissinger, 1996;
Lavelle, 1996; Barberena-Arias and Aide, 2003). This proxy
seemed to be the most appropriate, as soil fauna from different
trophic levels depend, directly or indirectly, on litter, which may
serve as food (Arpin et al., 1995; Sayer, 2006), habitat (David et al.,
1991) and refuge to hide from predators (Karban et al., 2013).
Productivity could have been measured by the quantity of plant
biomass produced per unit surface area in one year, in grams of dry
matter$m�2 year�1 (Calow et al., 1998), but this choice implied
logistical and time constraints that could not be met in this rather
remote environment. Previous studies have shown that soil fauna
species are specialised depending on micro-habitat (Usher et al.,
1982) and that their productivity could be strongly related to the
quality rather than the quantity of the litter (Batzer and Wissinger,
1996) or organic matter (Rushton and Hassall, 1987). Our data on
the C:N ratios did not showmuch difference between the quality of
the resource of the different plots, although we found differences
between the structures of the communities, which may indicate
that these communities were in fact more responsive to the
quantity than the quality of the resource. Other factors, such as clay
content and soil structure changed with inundation frequency, and
these factors may have also influenced the abundance and diversity
of soil fauna and vegetation (Dexter, 1988).

Regarding the influence of grazing on the communities, in the
ungrazed plots, the animal total biomass was the highest in the
most frequently inundated plotswhereas, in the grazed plots, it was
the highest in the least frequently inundated plots. Hence, this
suggests that cattle grazing modified the resource availability or
use from the soil fauna. We can assume that the combination of
both the low productivity and the impact of grazing impeded the
growth of the faunal community. However, there was no clear
difference between the slopes of the DBM relationships of the
grazed and ungrazed sites, therefore, the disturbance did not have
the impact that we had expected. This may be due to the fact that
cattle grazing decreased and induced uniformity in the litter mass
across the plots despite the different frequency of inundation,
which may explain why there was no difference either in the
average body mass of the grazed area (Fig. 3B). Furthermore,
grazing significantly decreased the vegetation height (Fig. 2C),
increasing the soil’s exposition to drought as well as soil compac-
tion (Coffin et al., 1998; Schrama et al., 2012), thereby reducing the
soil’s pore size (Schrama et al., 2013) which may explain that the
average body mass was lower in the grazed communities subjected
to monthly and weekly inundation. However, pore size did not
seem to be an essential environmental filter for the ungrazed
densityebody mass (DBM) relationships of the soil fauna communities subjected to

weekly Annually vs. daily Monthly vs. daily Weekly vs. daily

N.A. N.A. N.A.
P [ 0.042 P ¼ 0.107 P ¼ 0.352



Fig. 4. Densityebody mass relationships. Regressions of the densityebody mass (DBM) relationships of the grazed and ungrazed plots subjected to (A, E) annual, (B, F) monthly, (C,
G) weekly or (D) daily inundation and (H) table of the values of the slopes, R2 and P when the two groups with the smallest body mass (i.e., nematodes) are omitted. Significant
relationships have a trend line. Sl.: slope (�1SE); R2: adjusted R2. Legend: white: annual inundation; light grey: monthly inundation; dark grey: weekly inundation; black: daily
inundation; rhombi: ungrazed; circles: grazed.
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Table 3
Results of the ANCOVAs comparing the slopes of the densityebody mass (DBM)
relationships of the soil fauna communities in the presence and absence of grazing.

Grazing Body mass Grazing � body mass

Annually inundated F1,46 < 0.1 F1,46 ¼ 36.0 F1,46 ¼ 2
P ¼ 0.866 P < 0.001 P ¼ 0.672

Monthly inundated F1,49 ¼ 0.3 F1,49 ¼ 41.3 F1,49 < 0.1
P ¼ 0.612 P < 0.001 P ¼ 0.894

Weekly inundated F1,35 ¼ 0.6 F1,35 ¼ 24.5 F1,35 ¼ 0.2
P ¼ 0.443 P < 0.001 P ¼ 0.630

The bold numbers indicate the significant variables.
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communities; even though we did not directly measure the soil
structure, one can expect pore size to decrease from the least to the
most frequently inundated plots (Blom and Voesenek, 1996) but
instead, the average body mass increased across the same gradient.
Therefore, it seems that the size structure of soil fauna communities
is not determined by soil structure (i.e., pore size) but rather by
other factors, like had been shown in studies carried out in marine
and freshwater environments (Duplisea and Drgas, 1999; Seiderer
and Newell, 1999). Our results suggest that productivity was
more important for the size distribution of the communities than
the effects of cattle grazing and seawater inundation on soil
structure.
5. Conclusion

The relationship between soil fauna’s density and body mass is
an energetic relationship that can provide information on the size
structure of a community (body mass distribution) as this is a
reflection of the energy use of the different body mass categories,
showing the main resource consumers of the community (Nee
et al., 1991). However, it requires a thorough sampling of a wide
range of body masses and strong relationships to be able to detect
the effects of environmental variations from one community to
another, as these variations appear quite subtle at the community
level (Cyr et al., 1997a). With the use of the DBM relationship, we
were able to detect differences between similar soil fauna com-
munities living in environments of various productivities. Produc-
tivity, which was measured through the proxy litter mass, did not
seem to influence the average body mass of soil fauna, but it may
rather have modified the structure of the soil fauna communities
(De Deyn and van der Putten, 2005) by affecting the smallest ani-
mals only; thus, the communities from low productivity areas
seemed to be unbalanced because of the lack of small organisms.
Our findings were supported by simple ecological indices such as
the total density, total biomass and average body mass, except for
the effect of grazing.
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