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A B S T R A C T   

Climate change and land use intensification are the two most common global change drivers of biodiversity loss. 
Like other organisms, the soil meso-fauna are expected to modify their functional diversity and composition in 
response to climate and land use changes. Here, we investigated the functional responses of Collembola, one of 
the most abundant and ecologically important groups of soil invertebrates. This study was conducted at the 
Global Change Experimental Facility (GCEF) in central Germany, where we tested the effects of climate (ambient 
vs. ‘future’ as projected for this region for the years between 2070 and 2100), land use (conventional farming, 
organic farming, intensively-used meadow, extensively-used meadow, and extensively-used pasture), and their 
interactions on the functional diversity (FD), community-weighted mean (CWM) traits (life-history, 
morphology), and functional composition of Collembola, as well as the Soil Biological Quality-Collembola (QBS- 
c) index. We found that land use was overwhelmingly the dominant driver of shifts in functional diversity, 
functional traits, and functional composition of Collembola, and of shifts in soil biological quality. These sig-
nificant land use effects were mainly due to the differences between the two main land use types, i.e. cropland vs. 
grasslands. Specifically, Collembola functional biodiversity and soil biological quality were significantly lower in 
croplands than grasslands. However, no interactive effect of climate � land use was found in this study, sug-
gesting that land use effects on Collembola were independent of the climate change scenario. Overall, our study 
shows that functional responses of Collembola are highly vulnerable to land use intensification under both 
climate scenarios. We conclude that land use changes reduce functional biodiversity and biological quality of 
soil.   

1. Introduction 

Global environmental changes are threatening the biodiversity of 
terrestrial ecosystems both above and below the ground (Bellard et al., 
2012; Newbold et al., 2015). Of all global changes, land use 

intensification is one of the strongest drivers of soil biodiversity loss 
(Sala et al., 2000; Tsiafouli et al., 2015). It has been reported that soil 
biota are negatively affected by increased agricultural practices in crop 
fields and meadows (Ponge et al., 2013). Moreover, these land use ef-
fects can be climate-dependent (e.g., Blankinship et al., 2011; Phillips 
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et al., 2019). Changes in soil biodiversity have mostly been assessed 
using classical taxonomic indices (Vandewalle et al., 2010). As species 
differ in their responses to environmental change as well as in their ef-
fects on ecosystem functions (Mouchet et al., 2010), the limitations of 
taxonomic methods are obvious and calls have been made to supplement 
taxonomy-based approaches with trait-based approaches (Moretti et al., 
2017). Trait-based approaches have already been shown to advance our 
mechanistic understanding and predictive capabilities of the links be-
tween species traits and community responses, and thereby ecosystem 
processes (Laliberte and Shipley, 2011; Violle et al., 2007). So far, 
trait-based approaches have been mostly used in plant ecological re-
searches, but in recent years, they have also been applied to soil com-
munities (Dou et al., 2019; Hedde et al., 2012; Makkonen et al., 2011; 
Pey et al., 2014; Vandewalle et al., 2010; Wan Hussin et al., 2012) and 
future research priorities, i.e., using functional traits to interpret soil 
community responses and ecosystem effects, have been identified 
(Eisenhauer and Powell, 2017). 

Functional diversity (FD) is defined as a set of functional traits in a 
given community (de Bello et al., 2010). Generally, functional diversity 
can be represented by three main components: 1) functional richness 
(FRic), also known as functional biodiversity, indicates the amount of 
niche space occupied by the species in the community; 2) functional 
evenness (FEve) indicates the evenness of abundance distribution in 
occupied niche space; and 3) functional divergence (FDiv) indicates the 
degree to which the abundance distribution in functional niche space 
enhances divergence in functional traits within the community (Mason 
et al., 2005; Sechi et al., 2018; Vill�eger et al., 2008). These functional 
diversity indices are of great value in predicting the impacts of biodi-
versity on ecosystem functioning (Flynn et al., 2011; Reiss et al., 2009). 
Given the severity and rates of land degradation, the European Com-
mission has called for actions to manage soils sustainability through 
protecting soil biodiversity loss (European Commission, 2006). 

In this study, the functional responses of soil fauna communities to 
climate change and land use intensification were studied using Col-
lembola as our focal taxon. As Collembola are functionally diverse and 
one of the most abundant and widespread taxon across almost all 
terrestrial ecosystems (Hopkin, 1997). They are known indicators of soil 
disturbance, and are often used in soil biodiversity monitoring programs 
(Reis et al., 2016). Also, as is reported that the taxonomic diversity of 
Collembola declined in response to climate change (Makkonen et al., 
2011). Moreover, climate effects are likely to interact with land use ef-
fects to show an interaction effects, which may intensify or diminish 
their individual effects, on soil communities (Siebert et al., 2019; Yin 
et al., 2019a). Previous studies have been investigated the responses of 
Collembola traits to climate change (Makkonen et al., 2011; Thakur 
et al., 2018), but it still remains unclear how their traits respond to 
future climate in the context of land use change (Martins da Silva et al., 
2016; Winck et al., 2017). 

Functional traits of soil fauna are closely related to their morphology, 
physiology, or phenology (Pey et al., 2014), and reflect species-specific 
ecological preferences or environmental tolerances (de Bello et al., 
2010; Moretti et al., 2017). For example, habitat types are tightly related 
to morphological traits, such as body size, furca size and ocelli number 
(Christiansen, 1963; Rusek, 2007). Euedaphic species have a high pro-
portion of parthenogenesis, whereas epedaphic and hemiedaphic spe-
cies have a prevalence of sexual reproduction (Pollierer and Scheu, 
2017; Scheu and Drossel, 2007). Besides, euedaphic species have a 
weaker dispersal ability than epedaphic and hemiedaphic species 
(Hopkin, 1997). Such traits or trait syndromes may play critical roles in 
the fate of Collembola under environmental change, as they determine 
how a species or community responds to environmental change and how 
these responses may influence ecosystem functioning (Holmstrup et al., 
2018; Parisi et al., 2005). Linking traits to functions can be achieved 
using an easy-to-interpret index – Soil Biological Quality (Qualit�a Bio-
logica del Suolo: QBS) (Parisi et al., 2005). This index has been devel-
oped to combine two important aspects of soil arthropods: (1) their 

presence in the soil, as a proxy for biodiversity, and (2) their capability 
to adapt to changing soil conditions, as a proxy for vulnerability (Menta 
et al., 2018b). In particular, the QBS approach has been applied to a 
range of land uses to evaluate the effects of land use degradation (Menta 
et al., 2018a; Parisi et al., 2005). On that basis, the Soil Biological 
Quality-Collembola (QBS-c) index has been proposed for the analysis of 
Collembola communities (Gruss et al., 2019; Menta et al., 2014; Parisi, 
2001; Pinto et al., 2017). It has, for example, been shown that the values 
of QBS-c significantly decreased from extensive to intensive land man-
agement (Joimel et al., 2017; Martins da Silva et al., 2016; Menta et al., 
2014; Twardowski et al., 2016). However, the QBS-c approach has not 
yet been applied in projects on land use under different climate 
scenarios. 

We used the unique Global Change Experimental Facility (GCEF, see 
Sch€adler et al., 2019) to test the following hypotheses: climate change 
and intensive land use will 1) decrease Collembola functional diversity; 
2) shift functional composition of Collembola communities; and 3) 
decrease the soil biological quality, i.e., QBS-c values. Furthermore, 4) 
climate change will intensify the effects of land use intensification on 
Collembola functional diversity and soil biological quality. 

2. Materials and methods 

2.1. Experimental platform 

This study was conducted at the Global Change Experimental Facility 
(GCEF) (51� 230 30N, 11� 52’ 49E, 116 m a.s.l. in Bad Lauchst€adt, 
Saxony-Anhalt, Germany) of the Helmholtz-Centre for Environmental 
Research (UFZ) (Sch€adler et al., 2019). This area is characterized by a 
temperate, slightly continental climate with an average temperature of 
9.7 �C (1993–2013) and a mean annual precipitation of 525 mm 
(1993–2013). The soil type is a humus and nutrient-rich Haplic Cher-
nozem (Altermann et al., 2005; WRB, 2007). 

A detailed description of the GCEF and the experimental treatments 
is given in Sch€adler et al. (2019). In brief, the GCEF includes 50 sub-plots 
(24 � 16 m) which are arranged in ten main-plots, whereby five 
main-plots are subjected to the ambient climate whilst the other five to 
the future climate. Ambient climate treatment refers to the actual and 
non-manipulated climate in terms of precipitation and temperature at 
the field site whilst the future climate treatment refers to a consensus 
scenario across different regional projections for the period 2070–2100 
with an increased temperature and a changed precipitation pattern with 
reduced precipitation in summer and increased precipitation in spring 
and autumn. The use of automated roofs and side panels to passively 
increase night temperatures results in an average increase in daily mean 
temperature of 0.55 �C especially caused by a stronger increase in 
minimum temperatures (1.14 �C on average) and an increase in growing 
degree days by 5.2%. This set-up further allows a reduction in summer 
precipitation by ~20% and an increase in rainfall in spring and autumn 
by ~10% in line with future climate projections superimposed on the 
ambient variation in precipitation. 

The five different land use regimes include 1) the cropland type 
‘conventional farming’ (CF) with a typical regional crop rotation con-
sisting of winter rape, winter wheat and winter barley, mineral fertil-
izers and; 2) the cropland type ‘organic farming’ (OF) characterized by 
legumes replacing the rape in the crop rotation, mechanical weed con-
trol, non-stained seeds and a restricted use of pesticides; 3) the grassland 
type ‘intensively-used meadow’ (IM) with a commercially used mixture 
of forage grasses, and by moderate fertilization and frequent mowing 
(3–4 times per year); 4) the grassland type ‘extensively-used meadow’ 
(EM) consisting of a diverse mixture of more than 50 regionally typical 
plant species, moderate mowing (2times per year); 5) the grassland type 
‘extensively-used pasture’ (EP) with the same set of species as EM but 
managed by 2–3 grazing events per year. All treatments are described in 
detail in Sch€adler et al. (2019). 
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2.2. Collembola sampling, extraction, and identification 

Two soil cores (16 cm diameter, and 5 cm length) were sampled from 
each sub-plot in fall (October) 2016. Based on previous work in the 
GCEF (e.g., Siebert et al., 2019), it proved that samplings in fall were 
considered to be most representative of the treatment effects. A Kemp-
son heat extraction apparatus (Kempson et al., 1963) were used to 
extract Collembola in polyethylene glycol. Subsequently, we transferred 
the extracted Collembola individuals to 70% ethanol to preserve to be 
determined. For each sample, Collembola were counted and determined 
to species by placing on constant slides in the Faure medium based on 
the keys of Fjellberg (2007) and Hopkin (1997). 

2.3. Trait-based approaches for Collembola 

Based on previous study (Moretti et al., 2017), nine traits of Col-
lembola were collected, which might be responsive to changes in climate 
and land use, including life–history traits (habitat, reproductive mode 
and dispersal ability) and morphological traits (furca, ocelli, pigmen-
tation, hair, body size, and antenna). Each trait was scored from 0 to 4 
(Table S1), and these trait values were obtained from existing data bases, 
and (Gruss et al., 2019; Malmstr€om, 2012; Vandewalle et al., 2010). 
Higher scores indicate better adaptation to environment changes; for 
example, soil surface-dwelling species, sexual productive mode, fast 
dispersal ability, present (and long) furca, high number of ocelli, present 
(with patterns) pigmentation, the presence and abundance of hairs, 
large body size, and high ratio of antenna to body length. The QBS-c 
(biological quality index based on Collembola species) was calculated 
as the sum of trait values of each species for each sub-plot (Table S2). 
Higher values of QBS-c indicate higher soil biological quality. 
Community-weighted mean (CWM) traits for each sub-plot were 
calculated according to Garnier et al. (2004): 

CWM¼
Xn

n ¼ 1
Pi � Xi  

where Pi is the relative abundance of the ith species, Xi is the trait value 
of the ith species, and n is the number of species in the community. 

2.4. Calculations and statistical analyses 

All statistical analyses were performed using the R statistical soft-
ware (R Core Team, 2017). For each sub-plot, we calculated functional 
diversity based on CWM traits using the FD package (Lalibert�e et al., 
2014). This package uses Principal Co-ordinates Analysis (PCoA) to re-
turn axes that are then used as ‘traits’ to compute functional diversity 
indices, including functional richness (FRic), functional evenness 
(FEve), and functional divergence (FDiv) (Vill�eger et al., 2008). 

All FD indices, CWM traits, and the QBS-c index were analyzed using 
split-plot linear mixed models (LMMs) to assess the interactive effects of 
climate and land use. Post-hoc Tukey’s HSD tests were carried out to 
reveal significant differences among the respective levels within factors. 

Mean values of nine traits for each sub-plot were used in multivariate 
analysis, and a permutational multivariate analysis of variance (PER-
MANOVA) was applied to analyze the effects of climate, land use and 
their interaction on functional composition of Collembola communities 
fitted to non-metric multidimensional scaling (NMDS) ordination. 
Analysis of similarities (ANOSIM) based on Bray-Curtis distances were 
conducted using PAST (Hammer et al., 2001) and the Vegan package 
(Oksanen et al., 2013) to test the significance within different land use 
regimes. Visualization of 2D-NMDS was performed using the packages 
‘scatterplot 2D’ and rgl (Ligges and M€achler, 2003). 

Correlation graphs were produced using the PerformanceAnalytics 
package (Peterson et al., 2014) to show Pairwise Pearson’s correlations 
of Collembola functional diversity, with functional composition and soil 
biological quality. 

3. Results 

3.1. Effects of climate and land use on functional diversity indices 

The responses of functional diversity indices to climate change and 
land use differed in direction and magnitude (Table 1). Specifically, 
functional richness (FRic) was lower in croplands than in grasslands 
across climate scenarios (Fig. 1a), while functional evenness (FEve) was 
higher in croplands than in grasslands across climate scenarios (Fig. 1b). 
FRic was negatively correlated with FEve (Fig. S1). Functional diversity 
(FDiv) was not affected by any of treatments (Table 1). 

3.2. Effects of climate and land use on community weighted mean (CWM) 
traits 

All CWM traits of Collembola were significantly influenced by land 
use, but not by climate change, and by the interactive effects of climate 
and land use (Table 2). Generally, the CWM traits values were signifi-
cantly higher in the three grasslands than in the two croplands across 
climate scenarios (Fig. 2a–f). Among these traits, the CWM of hairs was 
significantly higher in extensively-used grasslands (meadows and pas-
tures) than in croplands and intensively-used meadows (Fig. 2g). Simi-
larly, the CWM of body size decreased significantly from extensively- 
used pastures to conventional farming (Fig. 2h). However, the CWM 
of antenna length was highest in intensively-used meadows compared to 
the other land use regimes (Fig. 2i). 

3.3. Effects of climate and land use on functional composition 

The functional composition of Collembola communities was signifi-
cantly influenced by land use, but not by the interactive effects of 
climate and land use (Fig. 3). Further, ANOSIM analyses showed that the 
significant effects of land use were derived from the differences between 
the two main land use types, i.e., croplands vs. grasslands, but not from 
management intensities within each of these two land use types (Fig. 3). 
Additionally, Collembola functional composition was correlated with 
their functional biodiversity (FRic) (Fig. S1). 

3.4. Effects of climate and land use on soil biological quality 

In line with our findings of functional diversity and trait values, the 
QBS-c index was significantly decreased by intensive land use, showing 
decreased QBS-c values from grasslands to croplands across climate 
scenarios (Table 2; Fig. 4). The QBS-c values were positively correlated 
to functional biodiversity (FRic) and functional composition (Fig. S1). 

4. Discussion 

The responses of soil biota to global change are non-random as they 
depend on the traits of species. In this study, we used trait-based ap-
proaches revealing the functional responses of Collembola communities 
to the interactive effects of climate change and land use intensification. 
Partially supported as our first three hypotheses, our results revealed 
that intensive land use but not climate change (i) decreased Collembola 
functional biodiversity, (ii) shifted their functional traits and 

Table 1 
Effects of climate, land use and their interaction on Collembola functional di-
versity (FD) indices: functional richness (FRic), functional evenness (FEve), and 
functional divergence (FDiv) using generalized mixed models. Significant effects 
are indicated in bold font: F-values with **P < 0.01, ***P < 0.001.  

Effects Df FRic FEve FDiv 

Climate (C) 1,8 1.52 2.91 0.08 
Land use (L) 4,32 7.53*** 4.7** 1.11 
C � L 4,32 0.81 0.44 0.87  
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composition, and (iii) degraded the soil biological quality. These find-
ings partly support our first three hypotheses. Contrary to our last hy-
pothesis, no significant interactive effects of climate and land use were 
found on these variables. Taken together, these findings indicate that 
intensive land use reduces soil functional biodiversity and biological 
quality independent of climate change. 

4.1. Land use intensification decreased functional biodiversity 

Functional diversity is receiving increased attention as an important 
component of biodiversity (Cadotte et al., 2011; Flynn et al., 2011; Gall�e 
et al., 2019; Wieczynski et al., 2019), as it can often better relate com-
munity structure with ecosystem functioning compared to taxonomic 
diversity (Fontana et al., 2016; Tilman et al., 1997). In this study, we 
highlight how a set of functional diversity indices, i.e., functional rich-
ness (FRic), functional evenness (FEve), and functional divergence 
(FDiv) of Collembola respond to climate change and land use intensifi-
cation. We found that Collembola functional richness was decreased by 
land use intensification, but not by climate change. Furthermore, these 
significant effects of land use intensification were due to the differences 
between land use types (croplands vs. grasslands) but not due to the 
distinct management intensities within the same land use type. This 
finding corroborates the notion that land use type and intensity differ-
entially filter traits in belowground fauna communities with strong 
negative effects of specific land use types on functional diversity and 
much smaller effects of variation in intensity within land use types 

(Birkhofer et al., 2017). Similarly, Chauvat et al. (2007) also found that 
Collembola taxonomic diversity decreased in responses to land use type 
conversion (from arable lands to grasslands) within the same landscape. 

Contrary to functional richness, the functional evenness of Collem-
bola communities was higher in croplands than in grasslands, and we 
also found a significantly negative correlation between functional 
richness and evenness. This is partially supported by Mason et al. 
(2005), who argued that functional richness and evenness are the same 
entities (i.e., to species), orthogonal but independent of each other; 
whereas functional divergence reflects mechanisms of ecological niche 
differentiation. For example, habitat heterogeneity has been shown to 
increase functional divergence (via trait-divergence) of aboveground 
organisms, which promote the co-occurrence of species with different 
ecological requirements (Pacala and Tilman, 1994). Accordingly, we 
expected that the functional divergence of Collembola would be higher 
in grasslands (more heterogeneous land type) than in croplands (more 
homogeneous land type). However, our results showed that Collembola 
functional traits were equally divergent between the two main land use 
types, suggesting that land use alone might not be a main driver of 
functional divergence for belowground fauna. 

4.2. Land use intensification shifted trait composition, and threatened soil 
biology quality 

Our results showed that functional traits and functional composition 
were shifted by land use intensification, but not by climate change. 

Fig. 1. Effects of climate and land use on (a) functional richness (FRic) and (b) functional evenness (FEve) of Collembola. Boxplots show the median (horizontal line), 
mean (red dot), first and third quartile (rectangle), 1.5 � interquartile range (whiskers), and outliers (isolated black dots). Lowercase letters represent significant 
differences between land use regimes (across climate scenarios) by Post-hoc Tukey’s HSD tests at P < 0.05. Abbreviations for land use regimes: CF ¼ conventional 
farming; OF ¼ organic farming; IM ¼ intensively-used meadow; EM ¼ extensively-used meadow; EP ¼ extensively-used pasture. Copyrights of land use icons by 
Gottschall/Siebert. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Effects of climate, land use and their interaction on community-weighted mean (CWM) of life-history traits (habitat-vertical stratification, reproductive mode, and 
dispersal ability), and morphological traits (furca, ocilli, pigmentation, hair, body size, and antenna length), and Soil Biological Quality index based on Collembola 
species (QBS-c) using generalized mixed models. Significant effects are indicated in bold font: F-values with ** ¼ P < 0.01, *** ¼ P < 0.001.  

Effects Df Life-history traits Morphological traits QBS-c 

Habitat Reproductive mode Dispersal ability Furca Ocelli Pigmentation Hair Body size Antenna length 

Climate (C) 1,8 0.36 0.41 0.05 0.7 0.61 0.06 0.34 2.49 4.02 0.29 
Land use (L) 4,32 7.15*** 7.48*** 8.58*** 7.18*** 8.23*** 9.98*** 4.3** 2.58* 7.03*** 8.6*** 
C � L 4,32 0.03 1.22 1.31 1.12 1.4 0.71 2.88 1.35 1.63 1.25  
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Specifically, from grasslands to croplands, the dominance of soil surface- 
dwelling species with sexual reproduction and fast dispersal shifted to a 
community dominated by soil-dwelling species with parthenogenetic 
reproduction and slow dispersal. This change was accompanied by 
morphological trait shifts, such as smaller body size and furca, as well as 
fewer ocelli. Such shifts in functional traits may result in unexpected 
responses of individual performance and community assembly, and 
thereby ecosystem functioning in a changing world. For example, the 
decreased mean body sizes of soil fauna may lead to a reduction in their 
community biomass, and thereby affect litter decomposition and 
nutrient cycling. Our findings are partially supported by another study 
(Martins da Silva et al., 2016), which showed that the responses of 
Collembola functional traits differed among land use types, i.e., the 
proportion of soil dwelling species was higher in natural sites than in 

arable sites, but soil surface-dwelling species showed the opposite 
pattern. In the present study, we also found that land use intensification 
shifted the functional composition of Collembola communities, and 
decreased the values of Soil Biological Quality index (QBS). Similarly, 
Ponge et al. (2013) using a comparable score (termed as ‘the composite 
index’) to estimate the effects of land uses and agricultural practice on 
the functional (i.e., morphological) traits of soil animals in French 
Brittany showed that land use intesification also exerted unfavorable 
effects on soil biology quality. Besides, some other studies showed that 
land use change shifted Collembola community structure through 
changing their community traits (Salmon et al., 2014; Salmon and 
Ponge, 2012). Our findings therefore suggest that land use intensifica-
tion is the main factor determining the dominance of single functional 
traits, thereby influencing the Collembola functional composition 

Fig. 2. Effects of climate and land use on community-weighted mean (CWM) of Collembola functional traits: (a) habitat – vertical stratification, (b) reproductive 
mode, (c) dispersal ability, (d) furca, (e) ocelli, (f) pigmentation, (g) hair, (h) body size, and (i) antenna length. Boxplots show the median (horizontal line), mean (red 
dot), first and third quartile (rectangle), 1.5 � interquartile range (whiskers), and outliers (isolated black dots). Lowercase letters represent significant differences 
between land use regimes (across climate scenarios) by Post-hoc Tukey’s HSD tests at P < 0.05. Abbreviations for land use regimes: CF ¼ conventional farming; OF ¼
organic farming; IM ¼ intensively-used meadow; EM ¼ extensively-used meadow; EP ¼ extensively-used pasture. Copyrights of land use icons by Gottschall/Siebert. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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pattern and soil biological quality. 

4.3. Negligible climate change effects on Collembola functional response 
variables 

Our previous study suggests that Collembola (abundance) are rather 
vulnerable to our projected future climate scenario (Yin et al., 2019b). 
Additionally, climate change may shift the functional traits and func-
tional composition of soil biota (Makkonen et al., 2011; Thakur et al., 
2017; Wallenstein and Hall, 2012). However, in this study, we did not 
find any significant effects of climate change on Collembola functional 
response variables. These findings are in line with Holmstrup et al. 
(2018), who found that functional responses of Collembola communities 
were significantly affected by short-term warming to 10 �C above 
ambient, while no effects were found under lower, and more realistic 
levels of climate warming in field conditions. This indicates that the 
functional diversity of Collembola communities is largely resistant to 
minor temperature increase, with little effects of simulated realistic 
climate change particularly so in field settings. This could further be 
related to potentially greater buffering of temperature in the soil given 
its highly compact three dimensional structure (Thakur et al., 2019). 
Furthermore, effects of small but realistic temperature changes may 
simply take longer to develop, resulting in strong(er) effects in the 
longer-term. Instead of testing soil community responses under highly 
controlled conditions, our study simulated a realistic future climate 
scenario with natural variability for Central Germany in the years of 
2070–2100 (i.e., þ0.6 �C above ambient) (Sch€adler et al., 2019). 

4.4. No interactive effects of climate and land use on Collembola 
functional response variables 

To determine the consequences of global change for terrestrial eco-
systems, it is important to understand how the interplay of climate and 
land use constrains biodiversity and ecosystem functions (Oliver et al., 
2016; Peters et al., 2019). We therefore hypothesized that the functional 
responses of Collembola would depend on interactive effects of climate 
change and land use intensification. However, we did not find any 
interactive effects. This finding is counter-intuitive, since 

Fig. 3. Effects of land use on functional composition 
of Collembola communities. On the left: Non-metric 
multidimensional scaling (NMDS) ordination 
showing similarity of functional composition of Col-
lembola communities among plots under different 
land use regimes. Effects of climate, land use, and 
their interaction were tested by permutational 
multivariate analysis of variance (PERMANOVA). On 
the right: Analysis of similarity (ANOSIM) of land use 
regimes based on Bray-Curtis distance measurement 
of functional composition revealed a significant sep-
aration between the two main land use types, i.e., 
croplands vs. grasslands. Significant effects are indi-
cated in bold font: ** ¼ P < 0.01, *** ¼ P < 0.001.   

Fig. 4. Effects of climate and land use on the soil biology quality (QBS-c). 
Boxplots show the median (horizontal line), mean (red dot), first and third 
quartile (rectangle), 1.5 � interquartile range (whiskers), and outliers (isolated 
black dots). Lowercase letters represent significant differences between land use 
regimes (across climate scenarios) by Post-hoc Tukey’s HSD tests at P < 0.05. 
Abbreviations for land use regimes: CF ¼ conventional farming; OF ¼ organic 
farming; IM ¼ intensively-used meadow; EM ¼ extensively-used meadow; EP ¼
extensively-used pasture. Copyrights of land use icons by Gottschall/Siebert. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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intensively-used lands, as characterized by higher levels of disturbance 
and lower biodiversity, are generally more vulnerable to climate change 
(Isbell et al., 2017). By contrast, extensively-used lands with less 
disturbance and higher biodiversity potentially mitigate these detri-
mental effects of climate change (Oliver et al., 2016). In previous 
studies, we found that climate change did not alter land use effects on 
the ecosystem function (i.e., litter decomposition) of soil detritivores 
(Yin et al., 2019c). All these findings suggest that predicted climate 
change may not intensify effects of land use change. However, we do 
expect that increasing frequency and magnitude of extreme climatic 
events may intensify land use effects on soil communities and recom-
mend such experiments as a priority for future global change studies. 

5. Conclusion 

We conclude that the functional responses of Collembola are 
particularly vulnerable to land use intensification but lesser so to climate 
change scenarios used in our study. Specifically, intensive land use 
decreased the functional biodiversity and shifted community traits, and 
thereby the functional composition of Collembola. Further, our findings 
show that these significant land use effects were determined by the 
differences between the two main land use types (croplands vs. grass-
lands), rather than by the different management intensities within the 
same land use type. However, no interactive effects of climate and land 
use were detected in this study, suggesting that the functional responses 
of Collembola to land use intensification were consistent under both 
climate scenarios. Based on these findings, we suggest that reduced 
Collembola functional biodiversity and soil biological quality may 
threaten the functions and services of intensively-managed ecosystems. 
Moreover, trait-based approaches were proven useful tools in this study 
in evaluating the functional responses of Collembola to environmental 
change. However, we still do not know the relationships between Col-
lembola and other soil biota under long-term environmental change. 

In a soil food web context, Collembola responses may depend on 
direct effects of environmental change, but also on bottom-up effects (i. 
e., through changes in their food sources) and top-down effects (i.e., 
through changes in predators). Future studies need to investigate func-
tional responses of soil communities to multiple types of environmental 
change (Rillig et al., 2019), and explore the potential links between 
species traits and community structure. Moreover, it will be important to 
explicitly link changes in the functional composition of soil communities 
to ecosystem functioning, to better understand the ecological conse-
quences of belowground functional shifts in a changing world. 
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